Prioritising the management of threat affecting the Pilbara species: conversation article and report available

Here’s the reason of my long silence from this blog. The report of our 2-year project is now available online (PDF, 10Mo)(The Conversation). The report assesses the cost-effectiveness of 17 feasible strategies for managing threats to the 53 most threatened Pilbara species. Key outcomes are that management likely to provide all species with a >50% chance of persistence costs less than $5 million/year. Amongst the most cost-effective strategies are managing introduced species and fire regimes.

Apart from being the project manager – responsible to deliver on time and on budget – I’ve had a lot of fun developing a method to find the complementary strategies that would minimize the biodiversity loss and the cost (manuscript under review). I hope you will enjoy it! It has been a true collaborative project across multiple organizations and has required the involvement of the whole team from start to the end.

Carwardine J, Nicol S, van Leeuwen S, Walters B, Firn J, Reeson A, Martin TG, Chades I (2014) Priority threat management for Pilbara species of conservation significance, CSIRO Ecosystem Sciences, Brisbane.

Pilbara_report_snapshotPilbara_report_snapshot1Pilbara_report_snapshot2

Recovering Interacting Species: Are sea otters a threat for abalone?

And the answer is no, but poaching is.

I’ve recently been contacted to talk about our paper in Conservation Biology (v.26/6), that forced me to read again our paper and assess what information was really valuable in this study. I thought that Jessica Jonhson – science writer for The Wildlife Society’s magazine The Wildlife Professional – did a great job at explaining our findings:

Recovery targets for endangered species often ignore interactions between species. For ones that are tightly linked in a predator-prey relationship—such as the northern sea otter (Enhydra lutris kenyoni) and the northern abalone (Haliotis kamtschatkana), both endangered— management plans that focus on only one species can sometimes put the other at risk of extinction. As reported in Conservation Biology (v.26/6), Iadine Chadès of CSIRO Ecosystem Sciences in Australia and colleagues with Fisheries and Oceans Canada developed a computer model to predict the outcome of proposed recovery strategies that address both sea otters and abalone at once. To make its predictions, the model incorporates the population dynamics of each species, their interactions, and how management decisions affect their abundance.  For example, sea otter populations are recovering well, and abalone could be in danger of overpredation by sea otters. However, the model revealed that even if sea otter predation somehow ceased, the abalone populations would not rebound. Instead, the model identified poaching of abalone as the most significant threat to that species, and calculated that poaching would have to be cut in half in order for populations to grow again. Such models cannot guarantee that a management action will succeed, but can help managers make more informed decisions when complex species interactions are involved.

Thanks Jessica,
Chadès, I., Curtis, J.M.R., and Martin, T.G., 2012. Setting realistic recovery targets for interacting endangered species. Conservation Biology 26, 1016-1025. (PDF)

How to manage a commercially valuable invasive species – buffel grass?

Cenchrus_ciliaris Have you ever been in a position where you had to make a decision but you were torn by conflicting objectives? Well, that is a very common issue when managing an invasive species that is also valuable for society. Unfortunately such a situation often paralyze the decision making process. In a recent paper to appear in Agricultural Systems led by Isabelle Grechi, we looked at how we could model such decision problem and propose valid solutions based on our so-called conflicting objectives. We introduce happyness curve to do so! We applied our decision framework to buffel grass (it doesn’t get more controversial than this plant in Australia!).

Have a look at the paper:

Grechi, I., I. Chades, Y. Buckley, M. Friedel, A. C. Grice, H. P. Possingham, R. D. van Klinken, and T. G. Martin. 2014. A decision framework for management of conflicting production and biodiversity goals for a commercially valuable invasive species. Agricultural Systems 125:1-11.

Highlights:

• Commercially valuable invasive species present a conflict for management.
• We model buffel grass dynamics with production and biodiversity benefits and costs.
• Management solutions are found that account for production-biodiversity trade-offs.
• Solutions are sensitive to the shape of the buffel cover–biodiversity relationship.
• Solutions are less sensitive to uncertainty about the management effectiveness.

 

 

 

Accounting for complementary to maximize monitoring power for species management

Congratulations to Ayesha Tulloch. We have a new paper in Conservation Biology that addresses how to monitor management actions. I really like that paper and I hope it will become a good reference, check it out! Note that we also provide the Matlab code.

One challenge faced by researchers and conservation practitioners is designing and implementing effective monitoring programs particularly when funds are limited. Decisions about how to monitor are hindered by uncertainty in management outcomes. This research demonstrates a new framework for addressing the uncertainties in selecting species for monitoring change due to a management action or policy, using network theory and decision analysis.

Tulloch A.I.T., Chadès I., Possingham H.P. (2013) Accounting for Complementarity to Maximize Monitoring Power for Species Management. Conservation Biology 27, 988-999. Abstract

Adaptive management of migratory birds

We have a new paper published at IJCAI (top Artificial Intelligence conference, ranked A*, probably the most selective conference, congratulations to Sam and team!).

Nicol S, Buffet O, Iwamura T, Chadès I (2013). Adaptive management of migratory birds under sea level rise. Proceedings of IJCAI-13, Beijing, China. (PDF);

Or read the blog version on the computational sustainability website.

In this paper we are posing an adaptive management challenge to the AI community:

  • Why do we care? Because solving adaptive management problem is a complex optimisation problem and efficient methods are lacking!
  • What are we hoping? We hope that future AI research will account for the specific description of adaptive management problems using our problem as a classic benchmark problem.
  • How can you help, what’s next? If you have a complex problem feel free to submit a challenge to the AI community!

 

Sam at IJCAI 2013
Sam at IJCAI 2013 – Photo: O. Buffet

Migratory connectivity magnifies habitat loss

Graph representing the migratory flyway of the eastern curlew

Tak‘s paper is out! Don’t miss the bottleneck index that we derived – a handy tool to predict the most important nodes.

Iwamura, T., Possingham, H.,  Chadès, I., Minton, C., Murray, N., Rogers, D., Treml, E., Fuller, R. (2013) Migratory connectivity magnifies the consequences of habitat loss from sea-level rise for shorebird populations Proc R Soc B 280: 20130325

Abstract:

Sea-level rise (SLR) will greatly alter littoral ecosystems, causing habitat change and loss for coastal species. Habitat loss is widely used as a measurement of the risk of extinction, but because many coastal species are migratory, the impact of habitat loss will depend not only on its extent, but also on where it occurs. Here, we develop a novel graph-theoretic approach to measure the Continue reading Migratory connectivity magnifies habitat loss

New paper out: Growing biodiverse carbon-rich forests

Congratulations to JB Pichancourt and team: An excellent work in an excellent journal! Feel free to contact JB directly if you require additional information on our paper.Pichancourt, JB; Firn, J,; Chades, I.; Martin T.G. 2013. Growing Biodiverse Carbon-Rich Forests. DOI: 10.1111/gcb.12345
Abstract:

Regrowing forests on cleared land is a key strategy to achieve both biodiversity conservation and climate change mitigation globally. Maximizing these co-benefits, however, remains theoretically and technically challenging because of the complex relationship between carbon sequestration and biodiversity in forests, the strong influence of climate variability and landscape position on forest development, the large number of restoration strategies possible, and long time-frames needed to declare success.Through the synthesis of three decades of knowledge on forest dynamics and plant functional traits combined with decision science, we demonstrate that we cannot always maximize carbon sequestration by simply increasing the functional trait diversity of trees planted. Continue reading New paper out: Growing biodiverse carbon-rich forests